9 research outputs found

    Comparative Analysis of Arabic Vowels using Formants and an Automatic Speech Recognition System

    Get PDF
    Arabic, the world's second most spoken language in terms of number of speakers, has not received much attention from the traditional speech processing research community. This study is specifically concerned with the analysis of vowels in modern standard Arabic dialect. The first and second formant values in these vowels are investigated and the differences and similarities between the vowels explored using consonant-vowels-consonant (CVC) utterances. For this purpose, a Hidden Markov Model (HMM) based recognizer is built to classify the vowels and the performance of the recognizer analyzed to help understand the similarities and dissimilarities between the phonetic features of vowels. The vowels are also analyzed in both time and frequency domains, and the consistent findings of the analysis are expected to enable future Arabic speech processing tasks such as vowel and speech recognition and classification

    Experiments on Automatic Recognition of Nonnative Arabic Speech

    No full text
    The automatic recognition of foreign-accented Arabic speech is a challenging task since it involves a large number of nonnative accents. As well, the nonnative speech data available for training are generally insufficient. Moreover, as compared to other languages, the Arabic language has sparked a relatively small number of research efforts. In this paper, we are concerned with the problem of nonnative speech in a speaker independent, large-vocabulary speech recognition system for modern standard Arabic (MSA). We analyze some major differences at the phonetic level in order to determine which phonemes have a significant part in the recognition performance for both native and nonnative speakers. Special attention is given to specific Arabic phonemes. The performance of an HMM-based Arabic speech recognition system is analyzed with respect to speaker gender and its native origin. The WestPoint modern standard Arabic database from the language data consortium (LDC) and the hidden Markov Model Toolkit (HTK) are used throughout all experiments. Our study shows that the best performance in the overall phoneme recognition is obtained when nonnative speakers are involved in both training and testing phases. This is not the case when a language model and phonetic lattice networks are incorporated in the system. At the phonetic level, the results show that female nonnative speakers perform better than nonnative male speakers, and that emphatic phonemes yield a significant decrease in performance when they are uttered by both male and female nonnative speakers

    Convolution-Based Encoding of Depth Images for Transfer Learning in RGB-D Scene Classification

    No full text
    Classification of indoor environments is a challenging problem. The availability of low-cost depth sensors has opened up a new research area of using depth information in addition to color image (RGB) data for scene understanding. Transfer learning of deep convolutional networks with pairs of RGB and depth (RGB-D) images has to deal with integrating these two modalities. Single-channel depth images are often converted to three-channel images by extracting horizontal disparity, height above ground, and the angle of the pixel’s local surface normal (HHA) to apply transfer learning using networks trained on the Places365 dataset. The high computational cost of HHA encoding can be a major disadvantage for the real-time prediction of scenes, although this may be less important during the training phase. We propose a new, computationally efficient encoding method that can be integrated with any convolutional neural network. We show that our encoding approach performs equally well or better in a multimodal transfer learning setup for scene classification. Our encoding is implemented in a customized and pretrained VGG16 Net. We address the class imbalance problem seen in the image dataset using a method based on the synthetic minority oversampling technique (SMOTE) at the feature level. With appropriate image augmentation and fine-tuning, our network achieves scene classification accuracy comparable to that of other state-of-the-art architectures

    To Decipher the Mycoplasma hominis Proteins Targeting into the Endoplasmic Reticulum and Their Implications in Prostate Cancer Etiology Using Next-Generation Sequencing Data

    No full text
    Cancer was initially considered a genetic disease. However, recent studies have revealed the connection between bacterial infections and growth of different types of cancer. The enteroinvasive strain of Mycoplasma hominis alters the normal behavior of host cells that may result in the growth of prostate cancer. The role of M. hominis in the growth and development of prostate cancer still remains unclear. The infection may regulate several factors that influence prostate cancer growth in susceptible individuals. The aim of this study was to predict M. hominis proteins targeted into the endoplasmic reticulum (ER) of the host cell, and their potential role in the induction of prostate cancer. From the whole proteome of M. hominis, 19 proteins were predicted to be targeted into the ER of host cells. The results of our study predict that several proteins of M. hominis may be targeted to the host cell ER, and possibly alter the normal pattern of protein folding. These predicted proteins can modify the normal function of the host cell. Thus, the intercellular infection of M. hominis in host cells may serve as a potential factor in prostate cancer etiology

    To decipher the mycoplasma hominis proteins targeting into the endoplasmic reticulum and their implications in prostate cancer etiology using next-generation sequencing data

    No full text
    Cancer was initially considered a genetic disease. However, recent studies have revealed the connection between bacterial infections and growth of different types of cancer. The enteroinvasive strain of Mycoplasma hominis alters the normal behavior of host cells that may result in the growth of prostate cancer. The role of M. hominis in the growth and development of prostate cancer still remains unclear. The infection may regulate several factors that influence prostate cancer growth in susceptible individuals. The aim of this study was to predict M. hominis proteins targeted into the endoplasmic reticulum (ER) of the host cell, and their potential role in the induction of prostate cancer. From the whole proteome of M. hominis, 19 proteins were predicted to be targeted into the ER of host cells. The results of our study predict that several proteins of M. hominis may be targeted to the host cell ER, and possibly alter the normal pattern of protein folding. These predicted proteins can modify the normal function of the host cell. Thus, the intercellular infection of M. hominis in host cells may serve as a potential factor in prostate cancer etiology

    Dementia Detection from Speech Using Machine Learning and Deep Learning Architectures

    No full text
    Dementia affects the patient’s memory and leads to language impairment. Research has demonstrated that speech and language deterioration is often a clear indication of dementia and plays a crucial role in the recognition process. Even though earlier studies have used speech features to recognize subjects suffering from dementia, they are often used along with other linguistic features obtained from transcriptions. This study explores significant standalone speech features to recognize dementia. The primary contribution of this work is to identify a compact set of speech features that aid in the dementia recognition process. The secondary contribution is to leverage machine learning (ML) and deep learning (DL) models for the recognition task. Speech samples from the Pitt corpus in Dementia Bank are utilized for the present study. The critical speech feature set of prosodic, voice quality and cepstral features has been proposed for the task. The experimental results demonstrate the superiority of machine learning (87.6 percent) over deep learning (85 percent) models for recognizing Dementia using the compact speech feature combination, along with lower time and memory consumption. The results obtained using the proposed approach are promising compared with the existing works on dementia recognition using speech

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore